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Abstract
The objective of this article is to characterize the entropy and L2 stability of several rep-
resentative discontinuous Galerkin (DG) methods for solving the compressible Euler
equations. Towards this end, three DG methods are constructed: one DG method with
entropy variables as its unknowns, and twoDGmethods with conservative variables as
their unknowns. These methods are employed in order to discretize the compressible
Euler equations in space. Thereafter, the resulting semi-discrete formulations are ana-
lyzed, and the entropy and L2 stability characteristics are evaluated. It is shown that the
semi-discrete formulation of the DG method with entropy variables is entropy and L2
stable. Furthermore, it is shown that the semi-discrete formulations of the DGmethods
with conservative variables are only guaranteed to be entropy and L2 stable under the
following assumptions: the entropyprojection errors vanish, or the terms containing the
entropy projection errors are non-positive. Thereafter, the semi-discrete formulation
with entropy variables, and one of the semi-discrete formulations with conservative
variables, are discretized in time with an ‘algebraically stable’ Runge–Kutta (RK)
scheme. The resulting formulations are fully-discrete and can be immediately applied
to practical problems. In this article, they are employed to simulate a vortex prop-
agating for long distances. It is shown that temporal stability is maintained by the
DG method with entropy variables, but the DG method with conservative variables
exhibits instability.
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1 Introduction

The compressible Euler equations for gas dynamics are a non-linear system of hyper-
bolic conservation laws that are inherently difficult to solve. They are remarkably
complex, as their solutions allow the propagation of waves over large distances, and
the formation of sharp gradients and discontinuities. Naturally, the numerical methods
for solving the compressible Euler equations must possess a high degree of robustness
and flexibility in order to accurately handle these phenomena. In addition, it is desir-
able for the numerical methods to be capable of operating on unstructured grids in
order to facilitate the treatment of complex geometries. Arguably, these requirements
narrow the range of acceptable methods down to two distinct categories: (1) Finite
Volume methods (FVMs), and (2) Finite Element methods (FEMs). The existence of
robust, high-order FVMs that are capable of operating on (at least) hexahedron and
tetrahedron elements in 3D is well-known. Themost popular FVMs of this type are the
‘essentially non-oscillatory’ (ENO) schemes [34–37,58,59] and ‘weighted-essentially
non-oscillatory’ (WENO) schemes [3,41,50,57]. These schemes are able to achieve
high-order accuracy while simultaneously controlling spurious oscillations that arise
due to aliasing errors and discontinuities. Unfortunately, high-order FVMs generally
require the construction of large stencils that may artificially link elements that are in
disparate parts of the mesh. In order to avoid this issue, many researchers have pur-
sued the development of FEMs (i.e., schemes in the second category). It is common
knowledge that FEMs, and in particular discontinuous FEMs (DFEMs), can achieve
high-order accuracy while maintaining a compact stencil by employing a high-order
polynomial basis that is locally constructed on each element [15,25,38]. The resulting
schemes are flexible and can operate on many element types, including hexahedrons,
tetrahedrons, prisms, and pyramids in 3D.Unfortunately, DFEMs tend to be less robust
when dealing with aliasing errors and discontinuities relative to their FVM counter-
parts. For this reason, it is desirable to obtain a better understanding of the stability of
DFEMs for solving the compressible Euler equations. Currently, the stability of DG
methods [14,16–18,20] is of interest, as they are arguably themost popular DFEMs for
solving the compressible Euler equations—although other alternatives exist, including
the well-known discontinuous Petrov Galerkin (DPG) methods [10,11,22–24,27,70].
Regrettably, it is not possible to cover all existing methods in this work, and therefore
the main focus will be on the stability of the more popular DG methods.

Before proceeding further, it important to clarify the intended meaning of the word
‘stability’ when the stability of a numerical scheme, ormore specifically the stability of
a DG scheme, is discussed. There are three distinct types of stability that should gener-
ally be consideredwhen the compressibleEuler equations are discretized via numerical
schemes: (1) the stability of the semi-discrete formulation obtained by discretizing in
space utilizing a particular numerical scheme, (2) the stability of the fully-discrete
formulation obtained by discretizing in space and time utilizing a particular numerical
scheme, and (3) the stability of the fully-discrete formulation obtained by discretizing
in space and time utilizing two different numerical schemes. This work will primarily
focus on establishing theoretical results that govern the first type of stability for DG
schemes. The second type of stability is not covered for the sake of brevity, although,
it is believed that an extension of the analysis in this work to space-time DG schemes
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is straightforward. Finally, the third type of stability is briefly covered by numerical
experiments in the latter part of this work.

In order to assess the first type of stability for a DG scheme, i.e. stability of the
semi-discrete formulation, it is useful to employ the criteria of ‘entropy stability’ and
‘L2 stability’. Entropy stability is considered by many to be an essential requirement
for a numerical scheme, as it ensures that the scheme satisfies a specific set of entropy
inequalities. In turn, these inequalities ensure that the scheme will converge to the
appropriate ‘entropy solutions’ (cf. [21,65]) of the compressible Euler equations. This
is of particular importance for FEMs, as their construction utilizes the weak form of
the governing equations, and as a result, it is possible to obtain a wide class of weak
solutions, some of which may not be physically realizable. Naturally, if an FEM is
entropy stable, then it immediately follows that only the realizable entropy solutions
will be obtained fromamongst theseweak solutions [21,39,65].Note that these entropy
solutions are not necessarily unique, however, they are (at minimum) guaranteed to
satisfy the second law of thermodynamics at the discrete level.

Now, in order to establish entropy stability for an FEM, it is necessary to first
symmetrize the compressible Euler equations by rewriting them in terms of so-called
‘entropy variables’. Note that these variables have been carefully obtained by a num-
ber of researchers for the compressible Euler equations [32,33,48,51] and also for
the compressible Navier–Stokes equations [42,56]. In order to complete the proof of
entropy stability, it is necessary to discretize the resulting symmetrized equations and
to establish an inequality that governs an entropy measure of the solution in time. This
procedure is carried out for a continuous FEM in [56], as entropy stability for the
compressible Navier–Stokes equations is proven for a space-time streamline upwind
Petrov Galerkin (SUPG) scheme which utilizes entropy variables as its unknowns, in
place of the usual conservative variables. The interested reader is referred to [42–45,56]
for additional details on the SUPG scheme and its stability. In [5,6] a similar result
is obtained for space-time DG schemes for the compressible Euler equations. In [39,
40,46] similar efforts were undertaken to prove entropy inequalities for DG schemes
applied to general hyperbolic systems of conservation laws. Finally, in [69] entropy
stability for the compressible Navier–Stokes equations is proven for space-time
hybridizable DG (HDG) methods which utilize entropy variables as their unknowns.

As a side note, entropy stability has also been established for certain classes of Finite
Difference (FD) schemes. These schemes are robust, but are limited to structured grids.
For more information, the reader is encouraged to consult [28,29,49,64,65].

L2 stability is another essential requirement for a numerical scheme. The classical
L2 stability condition governs the L2 norm of the conservative variables, and is the
only known a priori global bound that can be obtained for the solution [21,39]. The
idea of L2 stability is very closely related to the idea of entropy stability. In fact, if a
scheme is entropy stable, it is straightforward to demonstrate (under relatively mild
additional assumptions) that it is also L2 stable [21]. This is a remarkable fact that
further emphasizes the importance of entropy stability.

The previous research in this area (see above) has usually focused on proving the
entropy and L2 stability of space-time DG methods (and similar FEMs), all of which
utilize entropy variables as their unknowns. This is valuable groundwork, however
it is incomplete, as the vast majority of researchers solve the compressible Euler
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Table 1 A summary of the stability properties of DG methods for the compressible Euler equations

DG method with entropy
variables Eq. (4.1)

DG method with conser-
vative variables Eq. (4.3)

DG method with conser-
vative variables Eq. (4.4)

Entropy stable � – –

Entropy stable∗ � �† �†

L2 stable �† – –

L2 stable∗ �† �† �†

The significance of the symbols in the table are explained in the text

Table 2 A summary of the theorems that establish the results in Table 1

DG method with entropy
variables Eq. (4.1)

DG method with conser-
vative variables Eq. (4.3)

DG method with conser-
vative variables Eq. (4.4)

Entropy stable Thm. 5.5 – –

Entropy stable∗ Thm. 5.5 Thm. 6.2† Thm. 6.8†

L2 stable Thms. 7.4, 7.7† – –

L2 stable∗ Thms. 7.4, 7.7† Thms. 8.2†, 8.3† Thms. 8.2†, 8.3†

The significance of the symbols in the table are explained in the text

equations by spatially discretizing them with DG methods which utilize conservative
variables as their unknowns. While there is significant numerical evidence that would
suggest that these schemes are stable [15,38,67], the stability of these schemes has not
been thoroughly investigated mathematically. The purpose of this work is to precisely
identify the circumstances under which entropy and L2 stability are ensured for DG
methods which utilize conservative variables as their unknowns. In addition, this work
summarizes and extends a number ofwell-known results that govern the stability ofDG
methods which utilize entropy variables as their unknowns. As mentioned previously,
all the theoretical results in this work are given for the semi-discrete formulations of
these schemes. The stability of the fully-discrete formulations are explored through
some numerical experiments at the end of this work.

2 Summary of themain theoretical results and layout

In this work, three DGmethods are introduced for the purpose of spatially discretizing
the compressible Euler equations. Thereafter, the entropy stability, L2 stability, and
closely related concepts are investigated for each scheme. The results of this investi-
gation are summarized in Tables 1 and 2: Table 1 contains an overview of the results
and Table 2 contains an enumeration of the associated theorems. In the tables, a check
mark � indicates that a standard result was obtained, and a dash mark – indicates that
a result could not be obtained. In addition, a checkmark with a dagger �† (or simply
a dagger †) indicates that a new result, or an important extension of a existing result
was obtained. Finally, an asterisk ∗ means that a statement holds true when entropy
projection errors vanish pointwise in each element, or when the entropy projection
terms are non-positive.
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The terminology utilized in Tables 1 and 2, and the assumptions under which the
results were obtained, are fully elucidated in the remaining sections of this work. In
Sect. 3, the compressible Euler equations are introduced, and in Sect. 4, the associated
DG schemes are constructed. In Sects. 5 and 6, the entropy stability characteristics
of the schemes are evaluated. In Sects. 7 and 8, the L2 stability characteristics of
the schemes are evaluated. Finally, in Sect. 9, the fully-discrete, temporal stability
characteristics of the schemes are evaluated with numerical experiments.

In order to conclude this section, it is appropriate to comment on the relative
strengths and weaknesses of the DG schemes. Based on Tables 1 and 2, it is clear that
the DG scheme with entropy variables is more stable than the other schemes in the
sense that it satisfies the entropy stability and L2 stability criteria directly, whereas the
DG schemes with conservative variables are only entropy and L2 stable when entropy
projection errors vanish, or when the entropy projection terms are non-positive.

3 The compressible Euler equations and entropy variables

The compressible Euler equations can be written as follows

u,t + f i,xi = 0 in Ω × T , (3.1)

where t and xi are the temporal and spatial coordinates in the one-dimensional tem-
poral domain T and the d-dimensional bounded spatial domain Ω . In addition, u is
the m-valued solution, u : Ω × T → R

m , where m = d + 2. Furthermore, each
f i = f i (u) contains them-valued components of the inviscid fluxes in the i th spatial
direction, f i : Rm → R

m , where 1 ≤ i ≤ d. The reader is encouraged to consult
“AppendixA” for a useful explanation of the notation utilized here and in the remainder
of this work.

On its own, Eq. (3.1) is not complete, butmust be combinedwith an initial condition
u = u (t0, x) = u (t0) and boundary conditions of the following type

L(u, u∂ ) = 0 on ∂Ω × T ,

where L : R
m × R

m → R
m is a linear function of the solution and information

specified on the boundary (denoted by u∂ ).
In order to fix ideas, one may briefly review the following specific definitions of u

and f i for the compressible Euler equations

u =
⎡
⎣

ρ

ρ
{
V j
}

ρ
(
e + 1

2V
kVk

)

⎤
⎦ , f i =

⎡
⎢⎣

ρVi{
ρViV j + pδi j

}

ρVi
(
e + 1

2V
kVk + p

ρ

)

⎤
⎥⎦ .

Here, the standard fluid mechanical properties are denoted as follows: ρ is the density,
V = {

Vi
}
is the velocity vector (V = {u, v, w}T forΩ ⊂ R

3), e is the internal energy,
and p is the pressure. One may assume that the temperature T , pressure p, density ρ,
and internal energy e are related via the following equations of state
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p = ρRT , e = p

ρ (γ − 1)
,

where R denotes the specific gas constant and γ denotes the ratio of specific heats.
Having introduced several standard definitions, onemay nowdefine thewell-known

entropy variables v : Ω × T → R
m . A convenient definition for these variables (due

to [42] and [56]) is as follows

v = 1

e (γ − 1)

⎡
⎢⎣

−VkVk−2e
(
γ−In

(
e(γ−1)ρ1−γ

))
2e(γ−1){
V j
}

−1

⎤
⎥⎦ .

It is interesting to note that the entropy variables v, the solution variables u, and the
inviscid fluxes f i are related to each other by entropy functionals, which act from
R
m → R, and are denoted by U (u), Fi (u), U (v), and F i (v). These functionals are

implicitly defined such that

U,v = uT , U,v,v = u,v, (3.2)

F i
,v =

(
f i
)T

, F i
,v,v = f i,v, (3.3)

U,u = vT , Fi
,u = vT f i,u, (3.4)

U (u) = vT (u) u − U (v (u)) , Fi (u) = vT (u) f i (u) − F i (v (u)) .

(3.5)

Equivalently, the entropy functionals U (u) and Fi (u) can be explicitly defined as
follows

U (u) = −ρ

(
s − s∞

R

)
= − ρ

(γ − 1)
ln

(
p/ργ

p∞/ρ
γ∞

)
,

Fi (u) = −ρVi
(
s − s∞

R

)
= − ρVi

(γ − 1)
ln

(
p/ργ

p∞/ρ
γ∞

)
,

where s = s (p, ρ) is the entropy, and s∞, p∞, and ρ∞ are the reference entropy,
pressure, and density at an arbitrary, predetermined state. In a similar fashion, explicit
definitions for U (v) and F i (v) can be obtained by substituting the previous explicit
expressions for u, v, f i , U (u), and Fi (u) into Eq. (3.5).

One may set Eqs. (3.2)–(3.5) aside for the moment and return attention to Eq. (3.1).
Upon rewriting the solution variables in Eq. (3.1) in terms of entropy variables
[i.e. upon defining u = u (v) in this equation], one obtains the following

u,vv,t + f i,uu,vv,xi = 0. (3.6)

Next, Eq. (3.6) can be rewritten in terms of several Jacobian matrix definitions due to
Barth [5]. The matrix definitions are as follows
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Ã0 = u,v, Ã−1
0 = v,u, Ai = f i,u, Ãi = Ai Ã0, (3.7)

where it can be shown that Ã0 ∈ R
m×m and Ã−1

0 ∈ R
m×m are symmetric positive-

definite (SPD) matrices under mild assumptions (cf. Lemma B.1), and each Ãi ∈
R
m×m matrix is symmetric [5]. On substituting two of the four definitions from

Eq. (3.7) into Eq. (3.6), one obtains

Ã0 v,t + Ãi v,xi = 0, (3.8)

or equivalently,

v,t + Ã−1
0 Ãi v,xi = 0. (3.9)

These equations are convenient for certain types of analysis (cf. [5]). However, for
the purpose of constructing a discretization (as will be done in the next section), it
is easier to work with Eq. (3.8). Furthermore, in preparation for the next section, it
is convenient to initially omit the Jacobian definitions from Eq. (3.8) and to simply
rewrite Eq. (3.8) as follows

u,t (v) + f i,xi (u (v)) = 0. (3.10)

4 Discontinuous Galerkin methods

In this section, the standard DG approach is presented on simplex elements. As a pre-
liminary step, the notation associated with a mesh of simplex elements is clearly
defined. Thereafter, the DG method is presented in two distinct forms: first it is
expressed in terms of entropy variables as the unknowns, and second it is expressed
in terms of conservative variables as the unknowns.

4.1 Preliminaries

The implementation of the DG approach requires division of the domain Ω into ele-
ments Tk . For simplicity, it is assumed that each element Tk is a d-dimensional simplex,
and therefore, the collection of all elements is referred to as the triangulation (denoted
by Th , where h is some representative element size). Furthermore, it is assumed that
the mesh is conforming, i.e. the mesh does not contain hanging nodes. By definition,
one requires that the simplexes that make up the mesh have boundaries ∂Tk composed
of (d − 1)-dimensional simplicial faces denoted by Fl where 1 ≤ l ≤ (d + 1). In
turn, each face is associated with a normal vector n ∈ R

d . One further requires that
the elements are non-overlapping and that the domain Ω is polygonal such that

⋃
Tk∈Th

Tk = Ω, Tk = Tk ∪ ∂Tk .
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1086 D. M. Williams

For the sake of clarity, one may make a distinction between faces of the triangulation
(F�) and faces of the individual elements that belong to the triangulation (Fl ). The
latter faces were already discussed. The former faces can be classified as follows:
the union of all internal faces of the triangulation (i.e. the union of faces F� of the
triangulation that do not coincide with ∂Ω) can be denoted by E0

h , and the union of
all boundary faces of the triangulation (i.e. the union of faces that coincide with ∂Ω)
can be denoted by E∂

h . The total collection of triangulation faces is denoted by Eh , and
can be simply defined as Eh = E0

h ∪ E∂
h . For each face in the triangulation, one may

associate a normal vector n̂ ∈ R
d . The vector n̂ coincides in magnitude and angle

with n on the faces of the individual elements such that: n− = n̂ and n+ = −n̂.
After dividing the domain Ω into elements Tk in the fashion described above, one

may introduce the standard DG polynomial space as follows,

Wh =
{
wh : wh ∈ L2 (Ω) ,wh |Tk ∈ P p (Tk) ,∀Tk ∈ Th

}
,

where L2 = (L2 (Ω))m is a vector-valued L2 function space, and P p (Tk) =
(P p (Tk))

m is a vector-valued space of polynomials of order ≤ p on Tk .

4.2 The DGmethod with entropy variables

The DG method for Eq. (3.10) can be written in terms of entropy variables vh as
follows

∑
Tk∈Th

∫
Tk

[(
wh
)T

u,t

(
vh
)

−
(
wh

,xi

)T
f i
(
u
(
vh
))]

dx

+
∑
Tk∈Th

∫
∂Tk

(
wh
)T

f �
(
vh−, vh+; n

)
dx̂ = 0, (4.1)

where wh ∈ Wh , vh ∈ Wh , and where the numerical flux f �
(
vh−, vh+; n) : Rm ×

R
m × R

d → R
m takes the following form

f �
(
vh−, vh+; n

)
= 1

2

(
f i
(
u
(
vh−
))

+ f i
(
u
(
vh+
)))

ni + 1

2
h f

(
vh−, vh+; n

)
.

(4.2)

The numerical flux is required to satisfy f �
(
vh, vh; n) = f i

(
u
(
vh
))
ni . In addition,

note that the function h f (vh−, vh+; n) in Eq. (4.2) provides necessary dissipation. A
precise definition for h f (vh−, vh+; n) will be discussed later on in this work.

4.3 The DGmethods with conservative variables

The DG method for Eq. (3.10) can be written in terms of conservative variables uh as
follows
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∑
Tk∈Th

∫
Tk

[(
wh
)T

uh,t −
(
wh

,xi

)T
f i
(
uh
)]

dx

+
∑
Tk∈Th

∫
∂Tk

(
wh
)T

f �
(
v
(
uh−
)

, v
(
uh+
)

; n
)
dx̂ = 0, (4.3)

where uh ∈ Wh . It is important to note thatEqs. (4.1) and (4.3) describe fundamentally
different methods, as in general uh 
= u

(
vh
)
and vh 
= v

(
uh
)
.

One should note that Eq. (4.3) is not the standard way to write the DGmethod with
conservative variables as the unknowns. There is another more direct way to write the
DG method in terms of uh as follows

∑
Tk∈Th

∫
Tk

[(
wh
)T

uh,t −
(
wh

,xi

)T
f i
(
uh
)]

dx

+
∑
Tk∈Th

∫
∂Tk

(
wh
)T

f � (uh−, uh+; n
)
dx̂ = 0, (4.4)

where the numerical flux f � (uh−, uh+; n) : Rm ×R
m ×R

d → R
m takes the following

form

f � (uh−, uh+; n
)

= 1

2

(
f i
(
uh−
)

+ f i
(
uh+
))

ni + 1

2
h f

(
uh−, uh+; n

)
, (4.5)

and one requires that f � (uh, uh; n) = f i
(
uh
)
ni . Although Eqs. (4.3) and (4.4)

are both written in terms of conservative variables uh , the numerical fluxes that they
employ are generally fundamentally different, as roughly speaking, the numerical flux
in Eq. (4.3) adds dissipation that is proportional to interfacial jumps in v(uh) and the
numerical flux in Eq. (4.4) adds dissipation that is proportional to interfacial jumps in
uh . This point will becomemore clear when the numerical fluxes are precisely defined
later in this work.

5 Entropy stability for the DGmethod with entropy variables

It is well known that Eq. (4.1) is an entropy stable formulation for solving the com-
pressible Euler equations. In order to demonstrate this, one must substitute vh in place
of wh in Eq. (4.1) and follow the procedures described in [5,69]. For the sake of
completeness, the main result of these procedures is summarized in the following the-
orem. The theorem is prefaced with several necessary definitions in order to facilitate
its presentation.

Definition 5.1 The spatial jump operator [[·]]−+,
[[

vh
]]−

+ ≡ vh− − vh+. (5.1)
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1088 D. M. Williams

Definition 5.2 The spatial average operator {{·}}−+,
{{

vh
}}−

+ ≡ 1

2

(
vh− + vh+

)
. (5.2)

Note that the average operator does not explicitly appear in the statement of the fol-
lowing theorem, however it is closely related to the jump operator, and it is utilized in
subsequent sections.

Definition 5.3 The Mean-Value (or Symmetric Mean-Value) flux h f
MV

(
vh−, vh+; n̂) :

R
m × R

m × R
d → R

m , [5] p. 216 and [4] p. 10

h f
MV

(
vh−, vh+; n̂

)

≡
∫ 1

0
(1 − θ)

(∣∣∣ Ãi

(
v
h
(θ)

)
n̂i
∣∣∣
Ã0

+
∣∣∣ Ãi

(
vh (θ)

)
n̂i
∣∣∣
Ã0

)[[
vh
]]−

+ dθ,

(5.3)

where

vh (θ) = vh+ − θ
[[

vh
]]+

− , v
h
(θ) = vh− + θ

[[
vh
]]+

− ,

∣∣∣ Ãi (·) n̂i
∣∣∣
Ã0

=
∣∣∣Ai (·) n̂i

∣∣∣ Ã0 (·) .

In the last expression, the matrix absolute value of Ãi (·) n̂i is symmetric positive
semi-definite (SPSD).

Definition 5.4 The non-negative function |||·|||| Ã(v)|,F�
: Rm → R, [5] p. 223 and [4]

pp. 10–12

|||·|||2| Ã(v)|,F�
≡
∫
F�

∫ 1

0
(1 − θ) (·)T

(⎧⎩ Ã+
i

(
v (θ)

)
n̂i
⎫⎭

Ã0

−
⎧⎩ Ã−

i (v (θ)) n̂i
⎫⎭

Ã0

)
(·) dθ dx̂, (5.4)

where

⎧⎩ Ã+
i

(
v (θ)

)
n̂i
⎫⎭

Ã0
=
(
Ai

(
v (θ)

)
n̂i
)+

Ã0

(
v (θ)

)
,

⎧⎩ Ã−
i (v (θ)) n̂i

⎫⎭
Ã0

=
(
Ai (v (θ)) n̂i

)−
Ã0 (v (θ)) ,

and where the matrices with + and − superscripts are defined such that

∣∣∣Ai

(
v (θ)

)
n̂i
∣∣∣ =

(
Ai

(
v (θ)

)
n̂i
)+ −

(
Ai

(
v (θ)

)
n̂i
)−

,

∣∣∣Ai (v (θ)) n̂i
∣∣∣ =

(
Ai (v (θ)) n̂i

)+ −
(
Ai (v (θ)) n̂i

)−
.
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The principal result of this section can now be summarized in the following theorem.

Theorem 5.5 Consider the DG scheme in Eq. (4.1) with p ≥ 0 and the term
h f (vh−, v+; n̂) chosen to be the Mean-Value flux [Eq. (5.3)]. The entropy stability
of this scheme is governed by the following equation

∑
Tk∈Th

[∫
Tk
U,t

(
u
(
vh
))

dx

]
+

∑

F�∈E0
h

[∣∣∣∣
∣∣∣∣
∣∣∣∣
[[

vh
]]−

+

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

| Ã(v)|,F�

]

= Λbc,inv

(
vh, vh

)
−

∑

F�∈E∂
h

[ ∫
F�

Fi
(
u
(
vh
))

n̂i d x̂
]
, (5.5)

where the term Λbc,inv

(
vh, vh

) [which is defined in Eq. (6.2) and by [69]] quantifies
the effects of boundary conditions.

Proof The proof of Theorem (5.5) follows directly from the work in [5] and [69]. In
particular, the same result is obtained in [5] with the caveat that [5] integrates each term
over space and time, whereas here, only integration in space has been assumed. This
result also appears in [69], with the caveat that a hybrid variable v̂h is introduced to
provide additional stabilization, and integration is once again performed in both space
and time instead of just in space. Hence, the result presented here requires only minor
modifications to previous work, and does not require an additional detailed proof. ��
Remark 5.6 It immediately follows from Eq. (5.5), that the DG scheme in Eq. (4.1)
is entropy stable for the compressible Euler equations when the boundary conditions
are chosen such that the terms

Λbc,inv

(
vh, vh

)
−

∑

F�∈E∂
h

[ ∫
F�

Fi
(
u
(
vh
))

n̂i d x̂
]
,

vanish or are non-positive, p ≥ 0, and h f (vh−, v+; n̂) is chosen to be the Mean-
Value flux [Eq. (5.3)]. For example, this holds true when the boundary conditions are
periodic, the solution has compact support, or the boundary conditions are chosen in
conjunction with the approaches of [26,63]. Under these circumstances, the time-rate
of change of the solution is governed by the following equation

∑
Tk∈Th

[∫
Tk
U,t

(
u
(
vh
))

dx

]
≤ 0, (5.6)

or equivalently

∑
Tk∈Th

[∫
Tk
U
(
u
(
vh
)

(t)
)
dx

]
≤

∑
Tk∈Th

[∫
Tk
U
(
u
(
vh
)

(t0)
)
dx

]
, ∀t ≥ t0.
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6 Entropy stability for the DGmethods with conservative variables

In accordance with the techniques outlined in the previous section, one can obtain
results governing the stability of the DGmethods in Eqs. (4.3) and (4.4). In preparation
for these results, one begins by reformulating Eq. (4.3) by performing integration by
parts and replacing summations over individual element faces with summations over
faces in the mesh as follows

Λsol(w
h, uh) + Λinv(w

h, uh) − Λbc,inv(w
h, uh) = 0, (6.1)

where

Λsol

(
wh, uh

)
=

∑
Tk∈Th

[∫
Tk

(
wh
)T

uh,t dx
]

,

Λinv

(
wh, uh

)
=

∑
Tk∈Th

[∫
Tk

(
wh
)T

f i,xi

(
uh
)
dx

]

+
∑

F�∈E0
h

[∫
F�

([[
wh
]]−

+

)T

f �
(
v
(
uh−
)

, v
(
uh+
)

; n̂
)
dx̂

]

+
∑

F�∈E0
h

[∫
F�

(
−
(
wh−

)T
f i
(
uh−
)
n̂i +

(
wh+

)T
f i
(
uh+
)
n̂i
)
dx̂

]
,

Λbc,inv

(
wh, uh

)
= −

∑

F�∈E∂
h

[∫
F�

(
wh
)T (− f i

(
uh
)
n̂i + f �

(
v
(
uh
)

, v
(
u∂
)

; n̂
))

dx̂

]
,

(6.2)

and where it has been assumed that a Dirichlet boundary condition u∂ has been speci-
fied. It is also convenient for the purpose of analysis to introduce the following quantity

Λproj

(
· , uh

)
= −Λinv

(
· , uh

)
+ Λbc,inv

(
· , uh

)
.

Finally, one may introduce the following definition.

Definition 6.1 The Mean-Value flux h f
MV

(
v
(
uh−
)
, v
(
uh+
) ; n̂) : Rm × R

m × R
d →

R
m , [5] p. 216 and [4] p. 10

h f
MV

(
v
(
uh−
)

, v
(
uh+
)

; n̂
)

≡
∫ 1

0
(1 − θ)

(∣∣∣ Ãi

(
v (θ)

)
n̂i
∣∣∣
Ã0

+
∣∣∣ Ãi (v (θ)) n̂i

∣∣∣
Ã0

)[[
v
(
uh
)]]−

+ dθ,

(6.3)

where

v (θ) = v
(
uh+
)

− θ
[[

v
(
uh
)]]+

− , v (θ) = v
(
uh−
)

+ θ
[[

v
(
uh
)]]+

− .
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The first principal result of this section can now be summarized in the following
theorem.

Theorem 6.2 Consider the DG scheme in Eq. (4.3) with p ≥ 0 and the term
h f (v (uh−

)
, v
(
uh+
) ; n̂) chosen to be the Mean-Value flux [Eq. (6.3)]. The entropy

stability of this scheme is governed by the following equation

∑
Tk∈Th

[∫
Tk
U,t

(
uh
)
dx

]
+

∑

F�∈E0
h

[∣∣∣∣
∣∣∣∣
∣∣∣∣
[[

v
(
uh
)]]−

+

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

| Ã(v)|,F�

]

= Λproj

(
εΠ, uh

)
+ Λbc,inv

(
v
(
uh
)

, uh
)

−
∑

F�∈E∂
h

[ ∫
F�

Fi
(
uh
)
n̂i d x̂

]
,

(6.4)

where the ‘entropy projection error’ is defined such that

εΠ = Πhv
(
uh
)

− v
(
uh
)

, (6.5)

and Πh is a L2 projection operator from L2 onto the space Wh.

Proof One may begin by replacing wh in Eq. (6.1) with the test function v
(
uh
)+ εΠ

in order to obtain

Λsol

(
v
(
uh
)

, uh
)

+ Λinv

(
v
(
uh
)

, uh
)

− Λbc,inv

(
v
(
uh
)

, uh
)

+ Λsol

(
εΠ, uh

)
− Λproj

(
εΠ, uh

)
= 0. (6.6)

The quantity εΠ is effectively a measure of the error between exactly evaluating the
entropy function v

(
uh
)
and evaluating its L2 projection. Of course, by construction,

the sum of εΠ and v
(
uh
)
lies inWh , and is thus suitable for replacing wh .

In what follows, several of the terms in Eq. (6.6) will be analyzed in more detail.
The solution term on the first line of Eq. (6.6) can be expanded as follows

Λsol

(
v
(
uh
)

, uh
)

=
∑
Tk∈Th

[∫
Tk

v
(
uh
)T

uh,t dx
]

. (6.7)

In accordance with Eq. (3.4), one observes that v
(
uh
)T

uh,t = U
(
uh
)
,u u

h
,t =

U,t
(
uh
)
. Therefore, upon substituting this identity into Eq. (6.7), one obtains

Λsol

(
v
(
uh
)

, uh
)

=
∑
Tk∈Th

[∫
Tk
U,t

(
uh
)
dx

]
. (6.8)
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In a similar fashion, the solution term on the second line of Eq. (6.6) can be expanded
as follows

Λsol

(
εΠ, uh

)
=

∑
Tk∈Th

[∫
Tk

(
Πhv

(
uh
)

− v
(
uh
))T

uh,t dx
]

= 0. (6.9)

This term vanishes because the L2 projection error is orthogonal to all polynomials
of degree ≤ p.

Next, the inviscid flux term in Eq. (6.6) can be expanded as follows

Λinv

(
v
(
uh
)

, uh
)

=
∑
Tk∈Th

[∫
Tk

v
(
uh
)T

f i,xi

(
uh
)
dx

]

+
∑

F�∈E0
h

[∫
F�

([[
v
(
uh
)]]−

+

)T

f �
(
v
(
uh−
)

, v
(
uh+
)

; n̂
)
dx̂

]

+
∑

F�∈E0
h

[∫
F�

(
−v

(
uh−
)T

f i
(
uh−
)
n̂i + v

(
uh+
)T

f i
(
uh+
)
n̂i
)
dx̂

]
.

(6.10)

Consider rewriting the first term on the RHS of Eq. (6.10) as follows

∑
Tk∈Th

[∫
Tk

v
(
uh
)T

f i,xi

(
uh
)
dx

]

=
∑

F�∈E0
h

[∫
F�

[[
Fi
(
uh
)]]−

+ n̂i d x̂
]

+
∑

F�∈E∂
h

[∫
F�

Fi
(
uh
)
n̂i d x̂

]
, (6.11)

where the identity v
(
uh
)T

f i,xi
(
uh
) = Fi

,xi

(
uh
)
[which follows from Eqs. (3.3) and

(3.5)] has been used, in conjunction with the divergence theorem.
Upon substituting Eq. (6.11) and the definition of the numerical flux [Eq. (4.2)]

into Eq. (6.10), one obtains

Λinv

(
v
(
uh
)

, uh
)

=
∑

F�∈E0
h

[∫
F�

[[
Fi
(
uh
)]]−

+ n̂i d x̂
]

+
∑

F�∈E∂
h

[∫
F�

Fi
(
uh
)
n̂i d x̂

]

+
∑

F�∈E0
h

[∫
F�

({{
v
(
uh
)}}−

+

)T [[
f i
(
uh
)]]+

− n̂i d x̂

]

+1

2

∑

F�∈E0
h

[∫
F�

([[
v
(
uh
)]]−

+

)T

h f
(
v
(
uh−
)

, v
(
uh+
)

; n̂
)
dx̂

]
. (6.12)
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Eq. (6.12) can be rewritten by invoking Eq. (B.4) from Lemma B.2. The equation from
the lemma is restated here for convenience.

[[
Fi
(
uh
)]]−

+ +
({{

v
(
uh
)}}−

+

)T [[
f i
(
uh
)]]+

−

= 1

2

∫ 1

0
(1 − θ)

([[
v
(
uh
)]]+

−

)T (
Ãi

(
v (θ)

)
− Ãi (v (θ))

) [[
v
(
uh
)]]+

− dθ.

(6.13)

On substituting Eq. (6.13) into Eq. (6.12), one obtains

Λinv

(
v
(
uh
)

, uh
)

=
∑

F�∈E∂
h

[ ∫
F�

Fi
(
uh
)
n̂i d x̂

]

+1

2

∑

F�∈E0
h

[ ∫
F�

∫ 1

0
(1 − θ)

([[
v
(
uh
)]]+

−

)T (
Ãi

(
v (θ)

)
− Ãi (v (θ))

)
n̂i
[[

v
(
uh
)]]+

− dθ dx̂

+1

2

∫
F�

([[
v
(
uh
)]]−

+

)T

h f
(
v
(
uh−
)

, v
(
uh+
)

; n̂
)
dx̂

]
. (6.14)

In Eq. (6.14), the function h f (v (uh−
)
, v
(
uh+
) ; n̂) can be replaced by theMean-Value

flux h f
MV

(
v
(
uh−
)
, v
(
uh+
) ; n̂) (cf. Definition 6.1) as follows

Λinv

(
v
(
uh
)

, uh
)

=
∑

F�∈E∂
h

[ ∫
F�

Fi
(
uh
)
n̂i d x̂

]

+ 1

2

∑

F�∈E0
h

[ ∫
F�

∫ 1

0
(1 − θ)

([[
v
(
uh
)]]−

+

)T (
Ãi

(
v (θ)

)
− Ãi (v (θ))

)
n̂i
[[

v
(
uh
)]]−

+ dθ dx̂

+ 1

2

∫
F�

∫ 1

0
(1 − θ)

([[
v
(
uh
)]]−

+

)T (∣∣∣ Ãi

(
v (θ)

)
n̂i
∣∣∣
Ã0

+
∣∣∣ Ãi (v (θ)) n̂i

∣∣∣
Ã0

)[[
v
(
uh
)]]−

+ dθ dx̂

]
. (6.15)

On manipulating Eq. (6.15), one obtains

Λinv

(
v
(
uh
)

, uh
)

=
∑

F�∈E∂
h

[ ∫
F�

Fi
(
uh
)
n̂i d x̂

]
+

∑

F�∈E0
h

[∣∣∣∣
∣∣∣∣
∣∣∣∣
[[

v
(
uh
)]]−

+

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

| Ã(v)|,F�

]
.

(6.16)

Here, the non-negative function from Definition 5.4 has been utilized. Upon substi-
tuting Eqs. (6.16), (6.8), and (6.9) into Eq. (6.6), one obtains Eq. (6.4). ��
Remark 6.3 It immediately follows from Eq. (6.4), that the DG scheme in Eq. (4.3)
is entropy stable for the compressible Euler equations when the boundary conditions
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are chosen appropriately (in line with Remark 5.6), p ≥ 0, h f (v (uh−
)
, v
(
uh+
) ; n̂) is

chosen to be the Mean-Value flux [Eq. (6.3)], and the projection error (εΠ ) vanishes
pointwise, or the projection error terms (Λproj

(
εΠ, uh

)
) are non-positive.Under these

circumstances, the time-rate of change of the solution is governed by the following
equation

∑
Tk∈Th

[∫
Tk
U,t

(
uh
)
dx

]
≤ 0, (6.17)

or equivalently

∑
Tk∈Th

[∫
Tk
U
(
uh (t)

)
dx

]
≤

∑
Tk∈Th

[∫
Tk
U
(
uh (t0)

)
dx

]
, ∀t ≥ t0.

It is worth discussing the conditions under which the projection error (εΠ ) vanishes
pointwise. Suppose that v

(
uh
)
is sufficiently smooth such that

∥∥∥Dp+1v
(
uh
)∥∥∥

L∞,Tk
< Mp, ∀h and some fixed p, (6.18)

or
∥∥∥Dp+1v

(
uh
)∥∥∥

L∞,Tk
< Mh, ∀p and some fixed h, (6.19)

where 0 < Mp < ∞ and 0 < Mh < ∞ are positive constants, Dp+1 : R → R is a
spatial derivative operator of order p + 1, and

∥∥∥Dp+1v
(
uh
)∥∥∥

L∞,Tk
≡ max

x∈Tk

[
max

(
Dp+1v1

(
uh
)

, . . . , Dp+1vm

(
uh
))]

.

Under these circumstances, the following vector-valued generalization of Ciarlet and
Raviart’s classic interpolation result (cf. [12], p. 20) holds

∥∥∥v
(
uh
)

− Πhv
(
uh
)∥∥∥

L∞,Tk
≤ CTk

∥∥∥Dp+1v
(
uh
)∥∥∥

L∞,Tk
h p+1,

or equivalently,

‖εΠ‖L∞,Tk ≤ CTk

∥∥∥Dp+1v
(
uh
)∥∥∥

L∞,Tk
h p+1, (6.20)

where CTk is a constant that is element dependent, and

∥∥∥v
(
uh
)

− Πhv
(
uh
)∥∥∥

L∞,Tk

≡ max
x∈Tk

[
max

(
v1

(
uh
)

− Πhv1

(
uh
)

, . . . , vm

(
uh
)

− Πhvm

(
uh
))]

.
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By Eq. (6.20), it immediately follows that the projection error vanishes pointwise
within each element when Eq. (6.18) holds and h → 0, or Eq. (6.19) holds and
p → ∞. As a result, the DG scheme in Eq. (4.3) is ‘asymptotically entropy stable’,
although it was necessary to require that the very strong assumptions in Eqs. (6.18) or
(6.19) hold in order to obtain this result.

Now, from the author’s perspective, this asymptotic result is somewhat weak, as
there is no clear indication that the required assumptions will hold in practice. It
appears that a better approach is to control the entropy projection errors by adding
more dissipation, as suggested in Remark 6.4.

Remark 6.4 Onemaymodify the DG scheme in Eq. (4.3) by adding the following ‘sta-
bilization term’ in order to control the entropy projection error terms (Λproj

(
εΠ, uh

)
),

Λstable

(
wh, uh

)
=

∑
Tk∈Th

[∫
Tk
S
(
wh, uh

)
dx

]
,

where S(wh, uh) is a stabilization function that will be subsequently defined. In order
to ensure that the stabilization term actually improves the scheme’s robustness, one
requires that the stabilization function S is dissipative (semi-coercive) when wh =
Πhv

(
uh
)
, i.e. one requires S

(
Πhv

(
uh
)
, uh

) ≥ 0. In addition, one requires that
the stabilization function is ‘primally consistent’, i.e. S

(
wh, u

) = 0 for the exact
solution u, as well as ‘dimensionally consistent’, i.e. S

(
Πhv

(
uh
)
, uh

)
has the same

units as U,t
(
uh
)
. It is difficult to construct a stabilization function that satisfies all of

these requirements. However, it is theoretically possible if one chooses S
(
wh, uh

)
as

follows

S
(
wh, uh

)
=
((

wh − v
(
uh
))T

SR
(
uh
))((

Πhv
(
uh
)

− v
(
uh
))T

SR
(
uh
))

,

(6.21)

or equivalently

S
(
wh, uh

)
=
((

wh − v
(
uh
))T

SR
(
uh
))(

(εΠ)T SR
(
uh
))

, (6.22)

where S ∈ R
m×m is an SPD stabilization matrix, and R : Rm → R

m is the strong
form of the residual operator

R
(
uh
)

= uh,t + f i,xi

(
uh
)

,

where R (u) = 0 for the exact solution u.
In order to preserve dimensional consistency of the stabilization function S, the

stabilization matrix S in Eq. (6.22) must have units of
√
t/ρ. A simple choice that

meets this requirement is S = √
c I , where
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c = ηΔt

ρ∞
,

where η > 0 is a user specified constant, and Δt is the characteristic time-step for a
time marching scheme.

It remains to show that S
(
Πhv

(
uh
)
, uh

) ≥ 0. However, this immediately follows
from substituting wh = Πhv

(
uh
)
into Eq. (6.22) in order to obtain

S
(
Πhv

(
uh
)

, uh
)

=
(
(εΠ)T SR

(
uh
))2 ≥ 0.

In conclusion, the proposed stabilization function [Eq. (6.22)] is of theoretical interest,
as it will guarantee entropy stability for sufficiently large values of η. However, in this
work we will not investigate this term further because, from a practical standpoint,
it makes more sense to just utilize entropy variables, thereby exactly vanishing the
entropy projection terms. The stabilization term is presented here only to inspire the
development of similar terms,whichmay be necessary in instanceswhere conservative
variables cannot be avoided (for instance, a piece of software is hard-coded with
conservative variables).

Remark 6.5 A modification of Eq. (6.4) holds for a more general class of numerical
fluxes h f . In particular, for any numerical flux h f that is more dissipative than the
Mean-Value flux [Eq. (6.3)], i.e.

([[
v
(
uh
)]]−

+

)T

h f
MV ≤

([[
v
(
uh
)]]−

+

)T

h f (6.23)

then the following modification of Eq. (6.4) holds

∑
Tk∈Th

[∫
Tk
U,t

(
uh
)
dx

]
+ C

∑

F�∈E0
h

[∣∣∣∣
∣∣∣∣
∣∣∣∣
[[

v
(
uh
)]]−

+

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

| Ã(v)|,F�

]

= Λproj

(
εΠ, uh

)
+ Λbc,inv

(
v
(
uh
)

, uh
)

−
∑

F�∈E∂
h

[ ∫
F�

Fi
(
uh
)
n̂i d x̂

]
,

(6.24)

where C ≥ 1. An extensive list of numerical fluxes that satisfy Eq. (6.23) is given
in [4]. This list includes the Lax-Friedrichs flux (which is presented in, for example,
[38]) and a modified form of the Harten-Lax-Van-Leer-Einfeldt (HLLE) flux (which
is presented in, for example [66]). These fluxes are more dissipative than the Mean-
Value flux, however, they are less expensive to compute. In particular, costly numerical
quadrature procedures are required in order to compute the Mean-Value flux. The cost
is controlled by the number of quadrature points that are required in order to accurately
approximate the trajectory integral in Eq. (6.3), which is difficult to determine a priori.
However, a general heuristic for finite element methods is that a quadrature rule of
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at least degree 3p is required in order to integrate inner products that arise in non-
linear convection problems [47]. Barth et al. [4] recommended using a Gauss-Lobatto
quadrature rule for this purpose, which exactly integrates a polynomial of degree
2q − 3 with q points [47,54]. As a result, the computation of the Mean-Value flux
will likely require at least q = �(3p + 3) /2� quadrature points. Conversely, the cost
of computing the Lax-Friedrichs or modified HLLE fluxes is close to the cost of
integrating with a single quadrature point. Therefore, for large values of p, the Mean-
Value flux will not be competitive from a cost standpoint with the simpler alternative
fluxes.

It is useful to introduce the following definitions prior to presenting the second
principal result of this section.

Definition 6.6 The ‘Volpert matrix’ G̃ = G̃
(
v
(
uh−
)
, v
(
uh+
)) : Rm × R

m → R
m×m ,

[5] p. 225. The Volpert matrix is required to be SPD and satisfy the following equation

[[
uh
]]−

+ = G̃
(
v
(
uh−
)

, v
(
uh+
)) [[

v
(
uh
)]]−

+ . (6.25)

It turns out that G̃ is guaranteed to exist due to Volpert trajectory integration theory
(cf. [5]). In fact, a precise formulation for G̃ can be obtained by invoking a particular
Mean-ValueTheorem for vector-valued functions (cf. [53] p. 278). This theoremyields
the following identity

[[
uh
]]−

+ =
[∫ 1

0
u,v (v (θ)) dθ

] [[
v
(
uh
)]]−

+

=
[∫ 1

0
Ã0 (v (θ)) dθ

] [[
v
(
uh
)]]−

+ , (6.26)

where the last line follows from the identities in Eq. (3.7). Upon comparing Eq. (6.26)
with Eq. (6.25), it is immediately obvious that G̃

(
v
(
uh−
)
, v
(
uh+
))
takes the following

form

G̃
(
v
(
uh−
)

, v
(
uh+
))

=
∫ 1

0
Ã0 (v (θ)) dθ. (6.27)

Based on Eq. (6.27), it is clear that G̃
(
v
(
uh−
)
, v
(
uh+
))

is SPD because Ã0 is SPD
(under the assumptions of Lemma B.1).

Definition 6.7 The ‘Volpert flux’ h f
V P

(
uh−, uh+, n̂

) : Rm × R
m × R

d → R
m

h f
V P

(
uh−, uh+, n̂

)
≡ B

(
uh−, uh+, n̂

) [[
uh
]]−

+ , (6.28)
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where B
(
uh−, uh+, n̂

) ∈ R
m×m is a matrix that is defined as follows

B
(
uh−, uh+, n̂

)

≡
[∫ 1

0
(1 − θ)

(∣∣∣ Ãi

(
v (θ)

)
n̂i
∣∣∣
Ã0

+
∣∣∣ Ãi (v (θ)) n̂i

∣∣∣
Ã0

)
dθ

] (
G̃
(
v
(
uh−
)

, v
(
uh+
)))−1

.

The second principal result of this section can now be summarized in the following
theorem.

Theorem 6.8 Consider the DG scheme in Eq. (4.4) with p ≥ 0 and the term
h f (uh−, uh+; n̂) chosen to be the Volpert flux [Eq. (6.28)]. The entropy stability of
this scheme is governed by the following equation

∑
Tk∈Th

[∫
Tk
U,t

(
uh
)
dx

]
+

∑

F�∈E0
h

[∣∣∣∣
∣∣∣∣
∣∣∣∣
[[

v
(
uh
)]]−

+

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

| Ã(v)|,F�

]

= Λproj

(
εΠ, uh

)
+ Λbc,inv

(
v
(
uh
)

, uh
)

−
∑

F�∈E∂
h

[ ∫
F�

Fi
(
uh
)
n̂i d x̂

]
.

(6.29)

Note that Eqs. (6.29) and (6.4) are identical.

Proof The proofs of Theorems 6.8 and 6.2 are virtually identical. The only apparent
difference arises when the numerical flux is evaluated. The numerical flux term

([[
v
(
uh
)]]−

+

)T

h f

takes the following form in the proof of Theorem 6.2

([[
v
(
uh
)]]−

+

)T

h f
MV

(
v
(
uh−
)

, v
(
uh+
)

, n̂
)

, (6.30)

and the following alternative form in the proof of Theorem 6.8

([[
v
(
uh
)]]−

+

)T

h f
V P

(
uh−, uh+, n̂

)
. (6.31)

123



An analysis of discontinuous Galerkin methods for the… 1099

However, upon substituting Definitions 6.1, 6.6, and 6.7, into Eqs. (6.30) and (6.31),
it is clear that the numerical flux terms are equivalent. In particular

([[
v
(
uh
)]]−

+

)T

h f
V P

(
uh−, uh+, n̂

)

=
([[

v
(
uh
)]]−

+

)T [∫ 1

0
(1 − θ)

(∣∣∣ Ãi

(
v (θ)

)
n̂i
∣∣∣
Ã0

+
∣∣∣ Ãi (v (θ)) n̂i

∣∣∣
Ã0

)
dθ

]

×
(
G̃
(
v
(
uh−
)

, v
(
uh+
)))−1 [[

uh
]]−

+

=
([[

v
(
uh
)]]−

+

)T [∫ 1

0
(1 − θ)

(∣∣∣ Ãi

(
v (θ)

)
n̂i
∣∣∣
Ã0

+
∣∣∣ Ãi (v (θ)) n̂i

∣∣∣
Ã0

)
dθ

]

×
(
G̃
(
v
(
uh−
)

, v
(
uh+
)))−1

G̃
(
v
(
uh−
)

, v
(
uh+
))([[

v
(
uh
)]]−

+

)

=
([[

v
(
uh
)]]−

+

)T ∫ 1

0
(1 − θ)

(∣∣∣ Ãi

(
v (θ)

)
n̂i
∣∣∣
Ã0

+
∣∣∣ Ãi (v (θ)) n̂i

∣∣∣
Ã0

)([[
v
(
uh
)]]−

+

)
dθ

=
([[

v
(
uh
)]]−

+

)T

h f
MV

(
v
(
uh−
)

, v
(
uh+
)

, n̂
)

.

This completes the proof. ��

Remark 6.9 Remarks 6.3–6.5 for Theorem 6.2 also apply to Theorem 6.8 with the
Volpert flux [Eq. (6.28)] in place of the Mean-Value flux [Eq. (6.3)], and the scheme
in Eq. (4.4) in place of the scheme in Eq. (4.3).

7 L2 stability for the DGmethod with entropy variables

If the entropy stability condition [Eq. (5.6)] holds for theDG scheme in Eq. (4.1), it can
be shown that certain conditions on the ‘L2 stability’ of the scheme also hold. These
conditions are summarized in the following theorems. The first theorem is prefaced
with several necessary definitions in order to facilitate its presentation.

Definition 7.1 The L2 norm ‖ · ‖2L2,Th on the entire domain

‖ · ‖2L2,Th ≡
∑
Tk∈Th

∫
Tk

(·)T (·) dx . (7.1)

Definition 7.2 The domain-averaged solution u∗, [6,21,39]

u∗ ≡ 1

meas (Ω)

⎡
⎣ ∑
Tk∈Th

∫
Tk
u
(
vh (t0)

)
dx

⎤
⎦ , (7.2)

where t0 is an arbitrary, but fixed initial time.
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Definition 7.3 The function H (u, u∗) : R
m × R

m → R of the solution and the
domain-averaged solution

H
(
u, u∗) ≡ U (u) −U

(
u∗)− (

U,u
(
u∗))T (u − u∗) . (7.3)

In Eq. (7.3) it is implicitly assumed that u = u
(
vh
)
.

The first result of this section can now be summarized in the following theorem.

Theorem 7.4 Suppose the DG scheme in Eq. (4.1) is conservative and satisfies
Eq. (5.6). Furthermore, suppose that u (t0) ∈ L2 (Ω), and in accordance with
Lemma B.3, H (u, u∗) is bounded at time t0 in the following weak sense

∑
Tk∈Th

∫
Tk

H
(
u (t0) , u∗) dx ≤ C‖u (t0) − u∗‖2L2,Th , (7.4)

where C > 0 is a constant that depends on the initial data. Then, in accordance with
the work of Dafermos [21], the scheme in Eq. (4.1) is L2 stable for all t ≥ t0 in the
following sense

‖u (t) − u∗‖L2,Th ≤ c‖u (t0) − u∗‖L2,Th , (7.5)

or more precisely

‖u
(
vh (t)

)
− u∗ (vh

)
‖L2,Th ≤ c‖u

(
vh (t0)

)
− u∗ (vh

)
‖L2,Th , (7.6)

where c ≥ 1 is a constant that depends on C.

Proof A somewhat complicated proof appears in [6,21,62]. However, the result in
Theorem 7.4 can also be obtained with a simpler proof, a detailed formulation of
which is presented in what follows.

In order to obtain the L2 stability condition in question, one may begin by introduc-
ing the concept of a domain-averaged solution u∗ [as was done in Eq. (7.2)]. Here, one
should not confuse the asterisk superscript ∗ with the star superscript � that has been
previously used to denote the (essentially) unrelated numerical fluxes. In addition, one
should observe that u∗ is constant in time, as it is assumed that the scheme (and the
associated boundary conditions) are designed such that mass, momentum, and energy
are conserved within the spatial domain, and therefore the total domain-averagedmea-
sure of these conservative quantities does not change in time. This assumption is valid
for all of the DGmethods proposed in our paper, provided the boundary conditions are
enforced via numerical fluxes. Under these circumstances, the schemes are ‘locally
conservative’ in accordance with the definition in, for example [13,19]. Therefore, u∗
remains fixed for these schemes, and onemay use it as a convenient reference quantity.

An L2 stability condition that relates the reference quantity u∗ and the time-
dependent solution u may now be obtained in a relatively straightforward manner
by analyzing the function H (u, u∗). Towards this end, one may observe that the
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quantityU,u in the definition of H (u, u∗) [Eq. (7.3)] is equivalent to vT by Eq. (3.4).
Upon utilizing this fact in Eq. (7.3), one obtains

H
(
u, u∗) = U (u) −U

(
u∗)− (

v
(
u∗))T (u − u∗) . (7.7)

In its current form, Eq. (7.7) is defined pointwise within every element of the domain.
One may obtain a weak form of Eq. (7.7) by integrating over the entire domain as
follows

∑
Tk∈Th

∫
Tk

H
(
u, u∗) dx =

∑
Tk∈Th

(∫
Tk

(
U (u) −U

(
u∗)) dx

)

−
∑
Tk∈Th

(∫
Tk

(
v
(
u∗))T (u − u∗) dx

)
. (7.8)

The second term on the RHS of Eq. (7.8) vanishes by the definition of u∗ in Eq. (7.2),
and by the fact that v (u∗) is independent of the spatial coordinates. With these sim-
plifications, Eq. (7.8) takes the following form

∑
Tk∈Th

∫
Tk

H
(
u, u∗) dx =

∑
Tk∈Th

∫
Tk

(
U (u) −U

(
u∗)) dx . (7.9)

Upon carefully examining theRHSofEq. (7.9), one realizes thatU (u∗) is independent
of time because u∗ is independent of time. Therefore, this part of the equation can be
eliminated by differentiating both sides with respect to time in order to obtain

d

dt

⎡
⎣ ∑
Tk∈Th

∫
Tk

H
(
u, u∗) dx

⎤
⎦ = d

dt

⎡
⎣ ∑
Tk∈Th

∫
Tk

(
U (u) −U

(
u∗)) dx

⎤
⎦

= d

dt

⎡
⎣ ∑
Tk∈Th

∫
Tk
U (u) dx

⎤
⎦

=
∑
Tk∈Th

[∫
Tk
U,t (u) dx

]

=
∑
Tk∈Th

[∫
Tk
U,t

(
u
(
vh
))

dx

]
. (7.10)

The RHS of Eq. (7.10) is guaranteed to be non-positive by the entropy stability con-
dition [Eq. (5.6)]. Utilizing this fact in conjunction with Eq. (7.10), it immediately
follows that

d

dt

⎡
⎣ ∑
Tk∈Th

∫
Tk

H
(
u, u∗) dx

⎤
⎦ ≤ 0.

123



1102 D. M. Williams

The above inequality ensures that a particular measure of H (u, u∗) monotonically
decreases in time. More precisely, it implies that

∑
Tk∈Th

∫
Tk

H
(
u (t) , u∗) dx ≤

∑
Tk∈Th

∫
Tk

H
(
u (t0) , u∗) dx, ∀ t ≥ t0, (7.11)

where the fact that u∗ is constant in time has been used. One may now introduce an
expression for the L2 norm into the inequality in Eq. (7.11). This can be done by noting
that U (u) is a strongly convex function (under the assumptions of Lemma B.5). As a
result, the following inequality holds in accordance with [7,52]

U
(
u∗)+ (

U,u
(
u∗))T (u − u∗)+ C‖u − u∗‖2L2

≤ U (u) , (7.12)

where C > 0 is a constant independent of u and u∗, and where the L2 norm is defined
pointwise such that

‖ · ‖2L2
= (·)T (·) .

Upon rearranging the inequality in Eq. (7.12), one obtains

C‖u − u∗‖2L2
≤ U (u) −U

(
u∗)− (

U,u
(
u∗))T (u − u∗) ,

C‖u − u∗‖2L2
≤ H

(
u, u∗) , (7.13)

where the definition of H (u, u∗) [Eq. (7.3)] has been used. Upon combining the result
in Eq. (7.13) with the expression on the LHS of Eq. (7.11), one obtains

C‖u (t) − u∗‖2L2,Th ≤
∑
Tk∈Th

∫
Tk

H
(
u (t) , u∗) dx . (7.14)

Similarly, for the expression on the RHS of Eq. (7.11), one obtains

C‖u (t0) − u∗‖2L2,Th ≤
∑
Tk∈Th

∫
Tk

H
(
u (t0) , u∗) dx . (7.15)

Upon comparing Eq. (7.15) with Eq. (7.4), it is clear that C ≥ C .
The final L2 stability condition is obtained by taking the positive square roots of

Eqs. (7.11), (7.14), and (7.4) and thereafter combining the results in order to obtain

‖u (t) − u∗‖L2,Th ≤
(
C

C

)1/2

‖u (t0) − u∗‖L2,Th , ∀ t ≥ t0. (7.16)

One immediately obtains Eq. (7.5) upon setting c =
(
C
C

)1/2 ≥ 1 in Eq. (7.16). ��
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Remark 7.5 Theorem 7.4 establishes an L2 bound on u (t) = u
(
vh (t)

)
as it evolves

in time. This is a useful result, however, it is somewhat unnatural in the following
sense: a function of the entropy variables u

(
vh (t)

)
is bounded in time, and yet the

entropy variables themselves vh (t) are not guaranteed to be bounded in a similar
fashion. It would be more natural and more convenient from the standpoint of analysis
to establish an L2 bound directly on the entropy variables. This ‘more natural’ bound
is derived in the second theorem of this section.

The following definition helps facilitate the presentation of the second theorem.

Definition 7.6 The function H
(
v (u∗) , vh

) : Rm × R
m → R

H
(
v
(
u∗) , vh

)
≡ U

(
v
(
u∗))− U

(
vh
)

−
(
U,v

(
vh
))T (

v
(
u∗)− vh

)
. (7.17)

The theorem itself is as follows.

Theorem 7.7 Suppose the DG scheme in Eq. (4.1) is conservative and satisfies
Eq. (5.6). Furthermore, suppose that vh (t0) ∈ L2 (Ω), u (t0) ∈ L1 (Ω), and each
component of v (u∗) is bounded. Finally, suppose that in accordance with LemmaB.4,
H
(
v (u∗) , vh

)
is bounded at time t0 in the following weak sense

∑
Tk∈Th

∫
Tk
H
(
v
(
u∗) , vh (t0)

)
dx ≤ C‖vh (t0) − v

(
u∗) ‖2L2,Th , (7.18)

where C > 0 is a constant that depends on the initial data. Then, the scheme in
Eq. (4.1) is L2 stable for all t ≥ t0 in the following sense

‖vh (t) − v
(
u∗) ‖L2,Th ≤ c‖vh (t0) − v

(
u∗) ‖L2,Th , (7.19)

where c ≥ 1 is a constant that depends on C.

Proof The proof of this theorem is very similar to the proof of Theorem 7.4. One
may begin by substituting the identity U,v = uT from Eq. (3.2) into the definition of
H
(
v (u∗) , vh

)
in Eq. (7.17), in order to obtain

H
(
v
(
u∗) , vh

)
= U

(
v
(
u∗))− U

(
vh
)

−
(
u
(
vh
))T (

v
(
u∗)− vh

)
. (7.20)

Next, one may utilize the leftmost expression in Eq. (3.5) in order to obtain the fol-
lowing identities

U
(
vh
)

=
(
vh
)T

u
(
vh
)

−U
(
u
(
vh
))

, (7.21)

U
(
v
(
u∗)) = (

v
(
u∗))T u∗ −U

(
u∗) . (7.22)
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On substituting the identities in Eqs. (7.21) and (7.22) into Eq. (7.20), one obtains

H
(
v
(
u∗) , vh

)
= U

(
u
(
vh
))

−U
(
u∗)− (

v
(
u∗))T (u

(
vh
)

− u∗) ,

or equivalently

H
(
v
(
u∗) , vh

)
= U (u) −U

(
u∗)− (

v
(
u∗))T (u − u∗) , (7.23)

where in the latter expression, the fact that u = u
(
vh
)
has been implicitly assumed.

Upon examining Eq. (7.23), one may immediately observe that the RHS is identical
to the RHS of Eq. (7.7) from Theorem 7.4. As a result, one may follow the steps that
appear in the proof of Theorem 7.4, cf. Eqs. (7.8)–(7.10), in conjunction with the
entropy stability condition in Eq. (5.6), in order to prove that the time derivative of
H
(
v (u∗) , vh

)
is bounded above as follows

d

dt

⎡
⎣ ∑
Tk∈Th

∫
Tk
H
(
v
(
u∗) , vh

)
dx

⎤
⎦ ≤ 0,

and

∑
Tk∈Th

∫
Tk
H
(
v
(
u∗) , vh (t)

)
dx ≤

∑
Tk∈Th

∫
Tk
H
(
v
(
u∗) , vh (t0)

)
dx, ∀ t ≥ t0.

(7.24)

Next, one should note that in accordance with Lemma B.6, the function U (v) is
strongly convex, and therefore the following holds

C‖vh − v
(
u∗) ‖2L2

≤ U
(
v
(
u∗))− U

(
vh
)

−
(
U,v

(
vh
))T (

v
(
u∗)− vh

)
,

C‖vh − v
(
u∗) ‖2L2

≤ H
(
v
(
u∗) , vh

)
,

and

C‖vh (t) − v
(
u∗) ‖2L2,Th ≤

∑
Tk∈Th

∫
Tk
H
(
v
(
u∗) , vh (t)

)
dx . (7.25)

Lastly, upon combining Eqs. (7.18), (7.24), and (7.25) and taking positive square roots,
one obtains the principal result [Eq. (7.19)]. ��

8 L2 stability for the DGmethods with conservative variables

If the entropy stability condition [Eq. (6.17)] holds for either of the DG schemes in
Eqs. (4.3) or (4.4), it can be shown that certain ‘L2 stability’ conditions also hold. These
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conditions are summarized in the following theorems. The first theorem is prefaced
with a necessary definition in order to facilitate its presentation.

Definition 8.1 The domain-averaged solution u∗,

u∗ ≡ 1

meas (Ω)

⎡
⎣ ∑
Tk∈Th

∫
Tk
uh (t0) dx

⎤
⎦ , (8.1)

where t0 is an arbitrary, but fixed initial time.

The first result of this section can now be summarized in the following theorem.

Theorem 8.2 Suppose the DG schemes in either Eqs. (4.3) or (4.4) are conserva-
tive and satisfy Eq. (6.17). Furthermore, suppose that uh (t0) ∈ L2 (Ω), and that
H
(
uh, u∗) is bounded at time t0 in the following weak sense

∑
Tk∈Th

∫
Tk

H
(
uh (t0) , u∗) dx ≤ C‖uh (t0) − u∗‖2L2,Th , (8.2)

where C > 0 is a constant that depends on the initial data. Then, the schemes in either
Eqs. (4.3) or (4.4) are L2 stable for all t ≥ t0 in the following sense

‖uh (t) − u∗‖L2,Th ≤ c‖uh (t0) − u∗‖L2,Th , (8.3)

where c ≥ 1 is a constant that depends on C.

Proof The proof of Theorem 8.2 is essentially identical to the proof of Theorem 7.4.
��

The second theorem of this section takes the following form.

Theorem 8.3 Suppose the DG schemes in either Eqs. (4.3) or (4.4) are con-
servative and satisfy Eq. (6.17). Furthermore, suppose that uh (t0) ∈ L1 (Ω),
v
(
uh (t0)

) ∈ L2 (Ω), and each component of v (u∗) is bounded. Finally, suppose
that H

(
v (u∗) , v

(
uh
))

is bounded at time t0 in the following weak sense

∑
Tk∈Th

∫
Tk
H
(
v
(
u∗) , v

(
uh (t0)

))
dx ≤ C‖v

(
uh (t0)

)
− v

(
u∗) ‖2L2,Th , (8.4)

where C > 0 is a constant that depends on the initial data. Then, the schemes in either
Eqs. (4.3) or (4.4) are L2 stable for all t ≥ t0 in the following sense

‖v
(
uh (t)

)
− v

(
u∗) ‖L2,Th ≤ c‖v

(
uh (t0)

)
− v

(
u∗) ‖L2,Th , (8.5)

where c ≥ 1 is a constant that depends on C.

Proof The proof of Theorem 8.3 is essentially identical to the proof of Theorem 7.7.
��
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Fig. 1 Density contours for the vortex at time t = 0

9 Numerical experiments

Thus far, this article has focused on the semi-discrete formulations of DG methods.
However, in this section, we consider the behavior of fully-discrete formulations that
are obtained by combining DG methods for spatial discretization with RK methods
for temporal discretization.

In order to evaluate the fully-discrete formulations, numerical experiments were
performed on a well-known vortex propagation problem [9,57,60,68]. The problem
consists of a 2D vortex which is initially centered at the point (0, 0) and travels
horizontally in the x-direction with a unit velocity. It has the following exact solution

u = 1 − ϕ exp
(
1 − r2

) y

2π
,

v = ϕ exp
(
1 − r2

) x

2π
,

ρ =
(
1 −

(
γ − 1

16γπ2

)
ϕ2 exp

(
2
(
1 − r2

))) 1
γ−1

,

p = ργ ,

where

r =
√

(x − t)2 + y2,

and where ϕ is the vortex strength. Throughout the experiments, ϕ was set to 5 and γ

was set to 1.4. An illustration of the vortex at time t = 0 is shown in Fig. 1.
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The vortex was simulated on a 10 × 10 domain (−5 ≤ x, y ≤ 5) with periodic
boundary conditions imposed on all boundaries. The domain was covered with a
structuredmesh of triangular elements, and the mesh was formed by creating a 10×10
Cartesian grid of square elements, and then splitting the squares along the diagonals
(from top-left to bottom-right) to form triangles. On this mesh, two representative DG
methods were evaluated: the DG method with entropy variables [Eq. (4.1)] and the
DG method with conservative variables [Eq. (4.4)]. The DG method in Eq. (4.3) was
omitted for brevity’s sake. Throughout the experiments, the spatial polynomial order
p for each method was set to 4, unless indicated otherwise. Finally, the numerical flux
for each method was chosen to be the Lax-Friedrichs flux (as described in [38]). As
mentioned previously in Remark 6.5, this flux is known to be entropy stable if it is
utilized in conjunction with entropy variables [4,5].

In each experiment, the vortex was propagated until a final time of t = 500.
The time discretization was performed with an algebraically stable, 4th-order, 4-
stage, Singly Diagonally Implicit Runge–Kutta (SDIRK) method due to [1,8] (see
“Appendix C”). The non-linear system at each stage of the SDIRK method was lin-
earized using Newton’s method, and the resulting linear system was solved using the
Generalized Minimal Residual Method (GMRES) [55]. The step-size for Newton’s
method was controlled using a bisecting, line-search procedure. The iterative solution
process was implemented with the aid of PETSc, the Portable, Extensible Toolkit for
Scientific Computations, cf. [2,31] for details.

Before proceeding further, we note that an SDIRKmethodwas used because, unlike
explicit RK schemes, its time-step is not constrained by a CFL limit, which gives it
broader applicability to high-Reynolds number flows that require high aspect-ratio
mesh elements. While the current problem is not a problem of this type, these flows
will be an important application area in future work.

Time-steps of t = 0.1 and t = 0.05 were chosen. At each time-step, the norm∥∥vh − v (u∗)
∥∥
L2,Th in Theorem 7.7 was evaluated for the DG method with entropy

variables [Eq. (4.1)], and the norm
∥∥uh − u∗∥∥

L2,Th in Theorem 8.2 was evaluated for
the DG method with conservative variables [Eq. (4.4)]. In order to virtually eliminate
integration errors, the norms and the inner products in the finite element methods
were evaluated with numerical quadrature rules which exactly integrated polynomials
of degree ≤ 30.

In accordance with Theorems 7.7 and 8.2, it was optimistically expected that the
norms,

∥∥vh − v (u∗)
∥∥
L2,Th and

∥∥uh − u∗∥∥
L2,Th , would remain bounded in time.How-

ever, temporal stability was not guaranteed, as the assumptions of Theorems 7.7 and
8.2 were not exactly satisfied. In particular, both theorems govern the semi-discrete
formulations of the DG methods and not the fully-discrete formulations. In addition,
Theorem 8.2 assumes that the entropy projection errors are small, or that the entropy
projection terms are non-positive; neither of these assumptions is guaranteed to hold
true for this test case, as the mesh was very coarse. As a result, it was optimisti-
cally expected that Theorems 7.7 and 8.2 would capture the general tendencies of the
methods, but not the exact behavior.

The norms for both methods are plotted in Figs. 2 and 3. Based on Fig. 2, it is clear
that the DG method with entropy variables experiences some significant oscillations,
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Fig. 2 The evolution of
∥∥∥vh − v

(
u∗)∥∥∥

L2,Th
for the vortex test case. This result was obtained using the

DG method with entropy variables in Eq. (4.1)

Fig. 3 The evolution of
∥∥∥uh − u∗∥∥∥

L2,Th
for the vortex test case. This result was obtained using the DG

method with conservative variables in Eq. (4.4)
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but does not diverge. In addition, the norm for this scheme decrease monotonically (on
average). However, based on Fig. 3, it is clear that the DG method with conservative
variables stops running at roughly t = 90 seconds. At this point, NAN’s were detected
in the solution.

The experiments were repeated with p = 5 and dt = 0.1. The results are similar
to those of the p = 4 case, and are not shown for the sake of brevity. As before, the
DG method with conservative variables diverges, and the DG method with entropy
variables remains stable.

Overall, the DG method with entropy variables behaves in accordance with Theo-
rem 7.7 for long times, whereas, the DG method with conservative variables does not
behave in accordance with Theorem 8.2.

10 Conclusion

Several ‘typical’ DG methods were utilized to spatially discretize the compressible
Euler equations, and thereafter, the stability characteristics of the resulting semi-
discrete formulations were evaluated. Entropy and L2 stability were shown for the
semi-discrete formulation of a DG method with entropy variables as its unknowns
(cf. Theorems 5.5, 7.4, and 7.7). In addition, entropy and L2 stability were shown for
the semi-discrete formulations of twoDGmethods with conservative variables as their
unknowns, under the assumption that entropy projection errors vanish, or the entropy
projection terms are non-positive (cf. Theorems 6.2, 6.8, 8.2, and 8.3).

In the latter part of this work, the semi-discrete formulations associatedwith the DG
methods were fully discretized using algebraically stable RKmethods. Thereafter, the
temporal stability properties of the resulting fully-discrete formulationswere evaluated
with numerical experiments on a vortex propagation problem. Based on the experi-
ments, it was clear that the DG method with entropy variables remained stable and
(on average) demonstrated monotonic behavior for long times, in accordance with an
optimistic interpretation of Theorem 7.7. Conversely, a DG method with conservative
variables diverged, failing to behave in accordance with an optimistic interpretation
of Theorem 8.2. In this case, it is theorized that the entropy projection errors were too
large, or the entropy projection terms had the wrong sign, preventing Theorem 8.2
from holding. In future work, it may be beneficial to construct approaches that specifi-
cally minimize or control these entropy projection errors. Also, it is the author’s belief
that additional numerical experiments are required for a more complete comparison
of DG methods which utilize entropy and conservative variables.
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Appendix A: Notational conventions

The principal results in this paper are expressed via a mixture of index notation and
vector notation. This combination of notation is best explained with an example.

Consider the term
(
wh

,xi

)T
f i
(
uh
)
. This can be expanded as follows when d = 2

(
wh

,xi

)T
f i
(
uh
)

=
(

∂wh

∂x1

)T

f 1
(
uh
)

+
(

∂wh

∂x2

)T

f 2
(
uh
)

,

where the repeated index i facilitates the standard Einstein summation over d dimen-
sions, and the transpose facilitates the standard dot product between a pair ofm-vectors
[for instance wh

,x1 and f 1
(
uh
)
].

Appendix B: Supporting lemmas

Lemma B.1 Suppose that the pressure p and density ρ are bounded in the following
fashion

0 < p ≤ M, 0 < ρ ≤ N , (B.1)

where M and N are positive numbers. Then, the symmetric Jacobian matrices Ã0 and
Ã−1
0 (defined in Eq. (3.7)) are guaranteed to be positive definite (PD).

Proof In what follows, we present the proof for the 2D case. The proof for the 3D
case and for higher dimensions, is very similar. In 2D, one may begin by examining
the matrix Ã0, which can be expressed as follows

Ã0 =

⎡
⎢⎢⎣

ρ ρu ρv ρH − p
ρu ρu2 + p ρuv ρuH
ρv ρuv ρv2 + p ρvH

ρH − p ρuH ρvH ρH2 − γ ep

⎤
⎥⎥⎦ ,

where

H = γ e + 1

2

(
u2 + v2

)
.

The characteristic polynomial of Ã0 takes the following form

1

4
(λ − p)

(
aλ3 + bλ2 + cλ + d

)
= 0, (B.2)
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where

a = 4,

b = −ρ

((
2 + u2 + v2

)2 + 4e
(
γ
(
1 + u2 + v2 + e

)
− 1

))
,

c = ρ p

((
2 + u2 + v2

)2 + 4e (γ e + 1)

)
,

d = −4ρep2. (B.3)

It immediately follows from Eq. (B.2), that the pressure p is an eigenvalue. Evidently,
this eigenvalue is positive since Eq. (B.1) holds.

One may determine the signs of the remaining eigenvalues of Ã0 by first observing
that the matrix is symmetric and will have all real entries if Eq. (B.1) is satisfied. As a
result, the eigenvalues of Ã0 will be real, i.e. the roots of its characteristic polynomial
will be real. In accordance with Decartes’ rule of signs, a cubic polynomial with real
roots, and with coefficients a > 0, b < 0, c > 0, and d < 0 is guaranteed to have three
positive roots. By inspection of Eq. (B.3), it immediately follows that the coefficients
a, b, c, and d will have the required signs if Eq. (B.1) holds, if γ > 1 (which is true
for virtually all gases), and if one notes that e = p/(ρ (γ − 1)) > 0. This completes
the proof that Ã0 has positive eigenvalues.

The eigenvalues of Ã−1
0 are obtained by taking the reciprocals of the eigenvalues

of Ã0. The eigenvalues are positive as long as Eq. (B.1) holds, as under these circum-
stances, the eigenvalues of Ã0 remain positive, and the reciprocals of positive numbers
are positive. This completes the proof that Ã−1

0 has positive eigenvalues. ��
Lemma B.2 The jump in the entropy functional Fi (v) across an interface is governed
by the following

[[
Fi
(
uh
)]]−

+ +
({{

v
(
uh
)}}−

+

)T [[
f i
(
uh
)]]+

−

= 1

2

∫ 1

0
(1 − θ)

([[
v
(
uh
)]]+

−

)T (
Ãi

(
v (θ)

)
− Ãi (v (θ))

) [[
v
(
uh
)]]+

− dθ.

(B.4)

Proof The proof is virtually identical to the proofs of similar statements in [69] and
[5]. It is repeated here for the sake of completeness.

Recall that F i = F i (v (u)). On utilizing this fact in conjunction with Taylor’s
theorem, one can obtain the following
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F i
(
v
(
uh+
))

− F i
(
v
(
uh−
))

− F i
,v

(
v
(
uh+
)) (

v
(
uh+
)

− v
(
uh−
))

+
∫ 1

0
(1 − θ)

(
v
(
uh+
)

− v
(
uh−
))T

F i
,v,v (v (θ))

(
v
(
uh+
)

− v
(
uh−
))

dθ = 0,

(B.5)

F i
(
v
(
uh+
))

− F i
(
v
(
uh−
))

− F i
,v

(
v
(
uh−
)) (

v
(
uh+
)

− v
(
uh−
))

−
∫ 1

0
(1 − θ)

(
v
(
uh+
)

− v
(
uh−
))T

F i
,v,v

(
v (θ)

) (
v
(
uh+
)

− v
(
uh−
))

dθ = 0.

(B.6)

Upon multiplying Eqs. (B.5) and (B.6) by (1/2) and summing the results, one obtains

F i
(
v
(
uh+
))

− F i
(
v
(
uh−
))

− 1

2

(
f i
(
uh+
)

+ f i
(
uh−
))T (

v
(
uh+
)

− v
(
uh−
))

= 1

2

∫ 1

0
(1 − θ)

(
v
(
uh+
)

− v
(
uh−
))T (

Ãi

(
v (θ)

)
− Ãi (v (θ))

) (
v
(
uh+
)

− v
(
uh−
))

dθ,

(B.7)

where the fact that
(
f i
)T = F i

,v and Ãi = F i
,v,v has beenused (cf. Eqs. (3.3) and (3.7)).

Setting Eq. (B.7) aside for the moment, consider the following jump identity that
derives from Eq. (3.5)

Fi
(
uh+
)

− Fi
(
uh−
)

+ F i
(
v
(
uh+
))

− F i
(
v
(
uh−
))

= 1

2

(
v
(
uh+
)

+ v
(
uh−
))T (

f i
(
uh+
)

− f i
(
uh−
))

+1

2

(
f i
(
uh+
)

+ f i
(
uh−
))T (

v
(
uh+
)

− v
(
uh−
))

. (B.8)

Substituting Eq. (B.7) into Eq. (B.8) yields

Fi
(
uh−
)

− Fi
(
uh+
)

+ 1

2

(
v
(
uh−
)

+ v
(
uh+
))T (

f i
(
uh+
)

− f i
(
uh−
))

= 1

2

∫ 1

0
(1 − θ)

(
v
(
uh+
)

− v
(
uh−
))T (

Ãi

(
v (θ)

)
− Ãi (v (θ))

) (
v
(
uh+
)

− v
(
uh−
))

dθ.

(B.9)

Upon substituting the spatial jump [Eq. (5.1)] and average [Eq. (5.2)] operators into
Eq. (B.9) one obtains Eq. (B.4). ��
Lemma B.3 Suppose that the initial condition u (t0) ∈ L2 (Ω), and the pressure
p and density ρ are positive and bounded for all convex combinations of states
u (t0) and u∗ defined by ̂̂u (θ) = u∗ + θ (u (t0) − u∗), where 0 ≤ θ ≤ 1. Under
these circumstances, the following statements hold: (i) the L2 norm of u (t0) − u∗
is well-defined; (i i) the eigenvalues of Ã−1

0

(̂̂
u (θ)

)
are real and positive; and (i i i)
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the broken integral of H (u (t0) , u∗) over the domain Th is bounded in the following
fashion

∑
Tk∈Th

∫
Tk

H
(
u (t0) , u∗) dx ≤ λ1,Th

2
‖u (t0) − u∗‖2L2,Th , (B.10)

where λ1,Th
is themaximum eigenvalue of Ã−1

0

(̂̂
u (θ)

)
over all elements in the domain.

Note: throughout this lemma we implicitly assume that u (t0) = u
(
vh (t0)

)
.

Proof The proof of part (i) follows from inspection, and the proof of part (ii) is given
in Lemma B.1. Therefore, it remains to prove part (iii). One may begin the proof by
utilizing Taylor’s Theorem in order to expressU (u (t0)) in terms ofU (u∗) as follows

U (u (t0)) = U
(
u∗)+ (

U,u
(
u∗))T (u (t0) − u∗)

+
∫ 1

0
(1 − θ)

(
u (t0) − u∗)T U,u,u

(̂̂
u (θ)

) (
u (t0) − u∗) dθ. (B.11)

Upon substituting the expression for H (u (t0) , u∗) (as given by definition 7.3) into
Eq. (B.11), one obtains

H
(
u (t0) , u∗) =

∫ 1

0
(1 − θ)

(
u (t0) − u∗)T U,u,u

(̂̂
u (θ)

) (
u (t0) − u∗) dθ

=
∫ 1

0
(1 − θ)

(
u (t0) − u∗)T Ã−1

0

(̂̂
u (θ)

) (
u (t0) − u∗) dθ, (B.12)

where the definition of the inverse Jacobian matrix Ã−1
0 = U,u,u has been used in the

last line (see Eqs. (3.4) and (3.7)). The matrix Ã−1
0

(̂̂
u (θ)

)
has a maximum eigenvalue

denoted by λ1 (θ) = λ1

(
Ã−1
0

(̂̂
u (θ)

))
. Therefore, the last three terms that appear

under the integral sign in Eq. (B.12) can be bounded from above as follows

(
u (t0) − u∗)T Ã−1

0

(̂̂
u (θ)

) (
u (t0) − u∗)

≤ λ1 (θ)
(
u (t0) − u∗)T (u (t0) − u∗) ,

≤ λ1 (θ)
∥∥u (t0) − u∗∥∥2

L2
, (B.13)

where several standard results from Linear Algebra (cf. for instance [61]) have been
used. On substituting Eq. (B.13) into Eq. (B.12) and integrating both sides over the
entire domain, one obtains
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∑
Tk∈Th

∫
Tk

H
(
u (t0) , u∗) dx ≤

∑
Tk∈Th

∫
Tk

∫ 1

0

(
(1 − θ) λ1 (θ)

∥∥u (t0) − u∗∥∥2
L2

)
dθ dx,

≤
∑
Tk∈Th

(∫
Tk

λ1
∥∥u (t0) − u∗∥∥2

L2
dx

)∫ 1

0
(1 − θ) dθ,

≤ 1

2
λ1,Th

∥∥u (t0) − u∗∥∥2
L2,Th , (B.14)

where we have defined λ1 to be the maximum of λ1 (θ) over all 0 ≤ θ ≤ 1, and
λ1,Th

to be the maximum of λ1 over all elements in the domain. Finally, the proof is
completed by comparing Eq. (B.14) with Eq. (B.10). ��
Lemma B.4 Suppose that the initial condition vh (t0) ∈ L2 (Ω), the initial condition
u (t0) ∈ L1 (Ω), each component of v (u∗) is bounded, and the pressure p and density
ρ are positive and bounded for all convex combinations of states vh (t0) and v (u∗)
defined by ̂̂v (θ) = vh (t0) + θ

(
v (u∗) − vh (t0)

)
, where 0 ≤ θ ≤ 1. Under these

circumstances, the following statements hold: (i) the L2 normofvh (t0)−v (u∗) iswell-
defined; (i i) the eigenvalues of Ã0

(̂̂
v (θ)

)
are real and positive; and (i i i) the broken

integral ofH
(
v (u∗) , vh (t0)

)
over the domain Th is bounded in the following fashion

∑
Tk∈Th

∫
Tk
H
(
v
(
u∗) , vh (t0)

)
dx ≤ λ1,Th

2
‖vh (t0) − v

(
u∗) ‖2L2,Th , (B.15)

where λ1,Th
is the maximum eigenvalue of Ã0

(̂̂
v (θ)

)
, over all elements in the domain.

Note: throughout this lemma we implicitly assume that u (t0) = u
(
vh (t0)

)
.

Proof The proof of this lemma is very similar to the proof of LemmaB.3. In particular,
only part (iii) requires proof. One may begin the proof by using Taylor’s Theorem in
order to express U (v (u∗)) in terms of U

(
vh (t0)

)
as follows

U
(
v
(
u∗)) = U

(
vh (t0)

)
+
(
U,v

(
vh (t0)

))T (
v
(
u∗)− vh (t0)

)

+
∫ 1

0
(1 − θ)

(
v
(
u∗)− vh (t0)

)T
U,v,v

(̂̂
v (θ)

) (
v
(
u∗)− vh (t0)

)
dθ.

(B.16)

On substituting the expression forH
(
v (u∗) , vh (t0)

)
(as given by Definition 7.6) into

Eq. (B.16), one obtains

H
(
v
(
u∗) , vh (t0)

)

=
∫ 1

0
(1 − θ)

(
v
(
u∗)− vh (t0)

)T
U,v,v

(̂̂
v (θ)

) (
v
(
u∗)− vh (t0)

)
dθ

=
∫ 1

0
(1 − θ)

(
v
(
u∗)− vh (t0)

)T
Ã0
(̂̂
v (θ)

) (
v
(
u∗)− vh (t0)

)
dθ, (B.17)
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where the definition of the Jacobianmatrix Ã0 = U,v,v has beenused in the last line [see
Eqs. (3.2) and (3.7)]. The remainder of the proof requires a simple eigenvalue analysis
in order to find the maximum eigenvalue λ1 (θ) = λ1

(
Ã0
(̂̂
v (θ)

))
, and thereafter, the

construction of an upper bound with the maximum eigenvalue and the L2 norm

‖vh (t0) − v
(
u∗) ‖L2 ,

in accordance with the proof of Lemma B.3. ��
Lemma B.5 The functional U (u) is strongly convex on the setC ⊂ dom U (u), under
the assumptions that C is a convex set, and that the eigenvalues of the matrix Ã−1

0 (u)

are bounded away from zero for all u ∈ C , where Ã−1
0 is defined in Eq. (3.7).

Proof In order to prove the strong convexity ofU , onemust obtain a particular inequal-
ity governing the Hessian, U,u,u, for all u ∈ C . Towards this end, one may first note
that the following identity holds in accordance with Eqs. (3.4) and (3.7)

U,u,u = v,u = Ã−1
0 .

Here, the inverse Jacobian ( Ã−1
0 ) is SPD because the Jacobian itself ( Ã0) is SPD under

the assumptions of LemmaB.1. As a result, the eigenvalues ofU,u,u = Ã−1
0 are greater

than zero, and are guaranteed to satisfy the following inequality

λ1 ≥ · · · ≥ λm > 0.

Furthermore, it is common practice (cf. [6,62]) to assume that theminimum eigenvalue
of Ã−1

0 , for all u ∈ C , is bounded away from zero

λm ≥ 2C,

where C > 0 is a constant independent of u. Setting this result aside for the moment,
one may utilize the Hessian U,u,u in order to construct a quadratic form

uTb
(
U,u,u (ua)

)
ub, (B.18)

where ua and ub are arbitrary values of u ∈ C . In accordance with several standard
results from Linear Algebra (cf. for instance [61]), the quadratic form in Eq. (B.18)
satisfies the following inequalities

uTb
(
U,u,u (ua)

)
ub ≥ λmuTb ub,

= λm ‖ub‖2L2
,

≥ 2C ‖ub‖2L2
. (B.19)

From Eq. (B.19) and the strong convexity criterion in [7], p. 459, it immediately
follows that U (u) is strongly convex. ��
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Lemma B.6 The functional U (v) is strongly convex on the setC ⊂ dom U (v), under
the assumptions that C is a convex set, and that the eigenvalues of the matrix Ã0 (v)

are bounded away from zero for all v ∈ C , where Ã0 is defined in Eq. (3.7).

Proof The proof of this lemma is very similar to the proof of Lemma B.5. The proof
begins with the observation that Ã0 is SPD under the assumptions of Lemma B.1, and
that

U,v,v = u,v = Ã0,

in accordance with Eqs. (3.2) and (3.7). The rest of the proof requires a simple eigen-
value analysis, and the construction of inequalities involving the quadratic form,

vTb
(
U,v,v (va)

)
vb,

in accordance with the proof of Lemma B.5. ��

Appendix C: Algebraically stable SDIRKmethods

In this section, the Butcher tables for some well-known algebraically stable SDIRK
methods are presented.

The 1-stage 1st-order ‘Backward Euler’ method has the following Butcher table

1 1
1

The 2-stage 2nd-order method due to [1] and [8] has the following Butcher table

ζ ζ 0
c2 a21 ζ

b1 b2

where

ζ =
(
2 ± √

2
)

2
,

a21 = 1 − 2ζ, b1 = 1

2
, b2 = 1

2
, c2 = 1 − ζ.

The 3-stage 3rd-order method due to [1] and [8] has the following Butcher table

ζ ζ 0 0
c2 a21 ζ 0
c3 a31 a32 ζ

b1 b2 b3
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where

ζ = 0.43586652150845899941601945,

|d1| ≥ 1.774294247072785073096332, d2 =
(
1

2
− ζ − d1

)
b2
b3

,

a21 = 1

2
− ζ + d1, a31 = 1 − 2ζ − d2, a32 = d2,

b1 = d1 (1 − 2ζ ) + 1
6

(2ζ − 1) (2ζ − 1 − 2d1)
, b2 = ζ 2 − ζ + 1

6(
ζ − 1

2

)2 − d21
,

b3 = d1 (2ζ − 1) + 1
6

(2ζ − 1) (2ζ − 1 + 2d1)
,

c2 = 1

2
+ d1, c3 = 1 − ζ.

Note that the expression for d2 given here is different than the corresponding expres-
sion in [8]. The definition given here is the correct definition, as the original definition
contains a typographical error that prevents themethod frombeing algebraically stable.

Finally, the 4-stage 4th-order method due to [1,8] has the following Butcher table

ζ ζ 0 0 0
c2 a21 ζ 0 0
c3 a31 a32 ζ 0
c4 a41 a42 a43 ζ

b1 b2 b3 b4

where

ζ = 0.5728160624821348554080014,

d1 = ζ 2 − ζ

2
+ 1

12
, d2 = − ζ

(
ζ − 1

3

)
(
2ζ 2 − ζ + 1

6

) , d3 = ζ 3 − 3ζ 2

2
+ ζ

2
− 1

24
,

a21 = ζ
( 1
3 − ζ

)

2d1
, a31 = 1

2
− ζ − d3

d1
+ 8d3

(
ζ − 1

4

)

ζ
(
ζ − 1

3

) , a32 = −8d3
(
ζ − 1

4

)

ζ
(
ζ − 1

3

) ,

a41 = 1 − 2ζ − a42 − d1

(4ζ − 1)
(
b2 − 1

2

) , a42 =
(
ζ 2 − ζ + 1

6

)
/2 + d3/d2

d2
( 1
2 − b2

) ,

a43 = d1

(4ζ − 1)
(
b2 − 1

2

) , b1 = 1

2
− b2, b2 = d21

2ζ
(
ζ − 1

3

) (
ζ − 1

4

) , b3 = b2,

b4 = 1

2
− b2, c2 = ζ

(
ζ − 1

2

)2
d1

, c3 = 1

2
− d3

d1
, c4 = 1 − ζ.

Note that the expression for a31 given here is different than the corresponding expres-
sion in [8]. The definition given here is the correct definition, as the original definition
contains a typographical error that prevents themethod frombeing algebraically stable.
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